中國(guó)科學(xué)院大學(xué)【“鄒至莊講座”青年學(xué)者論壇】崔麗媛:Positive Definite High-dimensional Covariance Estimation Under a General Factor Model with High-frequency Data(10月25日)


中國(guó)科學(xué)院大學(xué)【“鄒至莊講座”青年學(xué)者論壇】崔麗媛:Positive Definite High-dimensional Covariance Estimation Under a General Factor Model with High-frequency Data(10月25日)
報(bào)告題目:Positive Definite High-dimensional Covariance Estimation Under a General Factor Model with High-
frequency Data
報(bào)告人:崔麗媛 香港城市大學(xué)
報(bào)告時(shí)間:2022年10月25日(周二) 16:30-18:00
報(bào)告地點(diǎn):中科院數(shù)學(xué)與系統(tǒng)科學(xué)研究院南樓N204;
騰訊會(huì)議ID:375-8612-5504
內(nèi)容摘要
This paper proposes a novel large-dimensional positive definite covariance (LDPDC) estimator for high-frequency data under a general factor model framework. We demonstrate an appealing connection between LDPDC and a weighted group LASSO penalized least squares estimator. LDPDC improves the traditional principal component analysis by allowing for weak factors, whose signal strengths are relatively weak compared to the idiosyncratic component. Even when microstructure noise and asynchronous trading are present, LDPDC achieves a guarded positive definiteness without deteriorating convergence rates. To make LDPDC fully operational, we provide an extended simultaneous alternating direction method of multipliers algorithm to solve the resultant constrained convex minimization problem. We offer a data-driven algorithm to select involved tuning parameters in practice optimally. Empirically, we study the monthly high-frequency covariance structure of the stock constituents of the S&P 500 index from 2008 to 2016, based on which we construct statistical high-frequency factor returns. We use all traded stocks from NYSE, AMEX, and NASDAQ stock markets to construct 12 high-frequency firm characteristic-based economic factors. We further examine the out-of-sample performance of LDPDC through vast portfolio allocations, which deliver significantly reduced out-of-sample portfolio risk and enhanced Sharpe ratios. The success of our approach helps justify the usefulness of machine learning techniques in finance.
主講人簡(jiǎn)介
崔麗媛,現(xiàn)為香港城市大學(xué)經(jīng)濟(jì)與金融系助理教授。2010年本科畢業(yè)于武漢大學(xué)數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè),2017年獲得美國(guó)康奈爾大學(xué)經(jīng)濟(jì)學(xué)博士學(xué)位。主要研究方向包括金融計(jì)量經(jīng)濟(jì)學(xué),高維協(xié)方差矩陣分析,高頻交易,非參數(shù)統(tǒng)計(jì)建模等。
(本文轉(zhuǎn)載自中國(guó)科學(xué)院大學(xué) ,如有侵權(quán)請(qǐng)電話聯(lián)系13810995524)
* 文章為作者獨(dú)立觀點(diǎn),不代表MBAChina立場(chǎng)。采編部郵箱:news@mbachina.com,歡迎交流與合作。
備考交流

掃碼關(guān)注我們
- 獲取報(bào)考資訊
- 了解院?;顒?dòng)
- 學(xué)習(xí)備考干貨
- 研究上岸攻略
最新動(dòng)態(tài)
推薦項(xiàng)目
活動(dòng)日歷
- 01月
- 02月
- 03月
- 04月
- 05月
- 06月
- 07月
- 08月
- 09月
- 10月
- 11月
- 12月
- 07/03 預(yù)約席位 | 7月3日交大安泰EMBA招生說(shuō)明會(huì)
- 07/05 最高可獲得2萬(wàn)元獎(jiǎng)學(xué)金| 上理管院專業(yè)學(xué)位項(xiàng)目2026聯(lián)合招生發(fā)布會(huì)&MBA/MPA/MEM職業(yè)賦能工坊第三期開(kāi)放申請(qǐng)中!
- 07/05 財(cái)務(wù)人必修的戰(zhàn)略思維課|復(fù)旦MPAcc公開(kāi)課報(bào)名
- 07/05 財(cái)務(wù)人必修的戰(zhàn)略思維課|復(fù)旦MPAcc公開(kāi)課報(bào)名!
- 07/05 【預(yù)告| 7.5北大國(guó)發(fā)院EMBA體驗(yàn)日】“導(dǎo)師·同學(xué)共話會(huì)” 邀您走進(jìn)北大承澤園
- 07/05 上海場(chǎng) | 清華-康奈爾雙學(xué)位金融MBA項(xiàng)目上海場(chǎng)公開(kāi)課暨招生說(shuō)明會(huì)誠(chéng)邀您參與!
- 07/05 上海交大MTT招生開(kāi)放日
- 07/05 鄭州活動(dòng)預(yù)告 | 7月5日交大安泰MBA全國(guó)巡展即將來(lái)到中原大地,招生政策、考生激勵(lì)、項(xiàng)目生態(tài)一場(chǎng)活動(dòng)全掌握!
- 07/05 海π智鏈 商道新生 | 2026東華大學(xué)MBA/EMBA/MPAcc/MEM/MF/MIB培養(yǎng)體系煥新發(fā)布會(huì)即將啟幕!
- 07/05 活動(dòng)報(bào)名 | 7月5日深圳招生直通車(chē),15年零售餐飲O2O行業(yè)學(xué)長(zhǎng)以夢(mèng)為馬,為何選擇交大安泰MBA?